Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles
نویسندگان
چکیده
Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability.
منابع مشابه
Rapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites
In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...
متن کاملPortable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices
BACKGROUND Nuclear magnetic resonance (NMR) technique is a powerful analytical tool in determining the presence of bacterial contaminants in complex biological samples. In this paper, a portable NMR-based (pNMR) biosensor and assay to detect the foodborne bacteria Escherichia coli O157:H7 is reported. It uses antibody-functionalized polymer-coated magnetic nanoparticles as proximity biomarker o...
متن کاملMagnetic Nanoparticles and microNMR for Diagnostic Applications
Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection...
متن کاملAntibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra
In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...
متن کاملUsing Bio-Functionalized Magnetic Nanoparticles and Dynamic Nuclear Magnetic Resonance to Characterize the Time-Dependent Spin-Spin Relaxation Time for Sensitive Bio-Detection
In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent ...
متن کامل